Proteomics Analysis of Amyloid and Nonamyloid Prion Disease Phenotypes Reveals Both Common and Divergent Mechanisms of Neuropathogenesis
نویسندگان
چکیده
Prion diseases are a heterogeneous group of neurodegenerative disorders affecting various mammals including humans. Prion diseases are characterized by a misfolding of the host-encoded prion protein (PrP(C)) into a pathological isoform termed PrP(Sc). In wild-type mice, PrP(C) is attached to the plasma membrane by a glycosylphosphatidylinositol (GPI) anchor and PrP(Sc) typically accumulates in diffuse nonamyloid deposits with gray matter spongiosis. By contrast, when mice lacking the GPI anchor are infected with the same prion inoculum, PrP(Sc) accumulates in dense perivascular amyloid plaques with little or no gray matter spongiosis. In order to evaluate whether different host biochemical pathways were implicated in these two phenotypically distinct prion disease models, we utilized a proteomics approach. In both models, infected mice displayed evidence of a neuroinflammatory response and complement activation. Proteins involved in cell death and calcium homeostasis were also identified in both phenotypes. However, mitochondrial pathways of apoptosis were implicated only in the nonamyloid form, whereas metal binding and synaptic vesicle transport were more disrupted in the amyloid phenotype. Thus, following infection with a single prion strain, PrP(C) anchoring to the plasma membrane correlated not only with the type of PrP(Sc) deposition but also with unique biochemical pathways associated with pathogenesis.
منابع مشابه
Anchorless prion protein results in infectious amyloid disease without clinical scrapie.
In prion and Alzheimer's diseases, the roles played by amyloid versus nonamyloid deposits in brain damage remain unresolved. In scrapie-infected transgenic mice expressing prion protein (PrP) lacking the glycosylphosphatidylinositol (GPI) membrane anchor, abnormal protease-resistant PrPres was deposited as amyloid plaques, rather than the usual nonamyloid form of PrPres. Although PrPres amyloid...
متن کاملOperational Plasticity Enables Hsp104 to Disaggregate Diverse Amyloid and Nonamyloid Clients
It is not understood how Hsp104, a hexameric AAA+ ATPase from yeast, disaggregates diverse structures, including stress-induced aggregates, prions, and α-synuclein conformers connected to Parkinson disease. Here, we establish that Hsp104 hexamers adapt different mechanisms of intersubunit collaboration to disaggregate stress-induced aggregates versus amyloid. To resolve disordered aggregates, H...
متن کاملPrions.
Infectious proteins (prions) are usually self-templating filamentous protein polymers (amyloids). Yeast prions are genes composed of protein and, like the multiple alleles of DNA-based genes, can have an array of "variants," each a distinct self-propagating amyloid conformation. Like the lethal mammalian prions and amyloid diseases, yeast prions may be lethal, or only mildly detrimental, and sh...
متن کاملProtein-Protein Interaction Analysis of Common Top Genes in Obsessive-Compulsive disorder (OCD) and Schizophrenia: Towards New Drug Approach
Comorbidty is common among psychiatric disorders including obsessive-compulsive disorder and schizophrenia with a high rate. Many studies suggested that the disorders may have same etiological bases. In this regard, shared pathways of glutamate, dopaminergic, and serotonin are the known ones. Here, the common significant genes are examined to understand the possible molecular origin of the diso...
متن کاملAlzheimer ’s Disease: Possible Mechanisms Behind Neurohormesis Induced by Exposure to Low Doses of Ionizing Radiation
In 2016, scientists reported that human exposure to low doses of ionizing radiation (CT scans of the brain) might relieve symptoms of both Alzheimer’s disease (AD) and Parkinson disease (PD). The findings were unbelievable for those who were not familiar with neurohormesis. X-ray stimulation of the patient’s adaptive protection systems against neurodegenerative diseases was the mechanism pr...
متن کامل